Table of Contents  
ORIGINAL ARTICLE
Year : 2014  |  Volume : 8  |  Issue : 2  |  Page : 87-90

Can transthoracic ultrasound differentiate between simple and obstructed pneumonia?


Chest Department, Assiut University Hospital, Assiut, Egypt

Date of Submission23-Feb-2014
Date of Acceptance09-Mar-2014
Date of Web Publication29-Nov-2014

Correspondence Address:
Randa E Abd Elkader
Chest Department, Assiut University Hospital, Assiut
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1687-8426.145695

Rights and Permissions
  Abstract 

Background The advantages of low cost, bedside availability, and no radiation exposure have made ultrasound an indispensable diagnostic tool in modern pulmonary medicine. Color Doppler ultrasound demonstrates normal or increased flow in the normal vessels of the consolidated lung and may be helpful in distinguishing simple pneumonia from postobstructive pneumonia.
Aim of the work The aim of this work was to describe sonographic features of simple and obstructed pneumonia and discuss the value of transthoracic ultrasound to differentiate between both diseases.
Results The study included 18 patients with simple pneumonia and seven patients with obstructed pneumonia. The sonographic findings were as follows: positive air bronchogram recorded in 100% of the cases of simple pneumonia, but not found in any case of obstructed pneumonia; fluid bronchogram not found in any case of simple pneumonia and present in 100% of obstructed pneumonia (P = 0.005). Oval and rounded shape, irregular shape, sharp well-demarcated, blurred-border, homogenous, heterogeneous, and hypoechoic echo patterns were found in 38.9, 61.1, 33.3, 66.7, 11.1, 88.9, and 100% of the cases of simple pneumonia and in 42.9, 57.1, 28.6, 71.4, 0, 100, and 85.7% of the cases of obstructed pneumonia, respectively. Pleural effusion was present in 44.4 and 42.9% of cases of simple and obstructed pneumonia, respectively. Fluid bronchogram was seen in the bronchial obstruction, as a result of either impacted secretions or a proximal tumor.
Conclusion The presence of signs of fluid bronchogram in the appropriate clinical context should raise the suspicion of postobstructive pneumonitis. Transthoracic ultrasound helps in distinguishing the central obstructing tumor as a hypoechoic mass from distal more echogenic consolidations.

Keywords: obstructed pneumonia, simple pneumonia, transthoracic ultrasound


How to cite this article:
Agmy GR, Wafy SM, Mohamed Hussein AA, Abd Elkader RE. Can transthoracic ultrasound differentiate between simple and obstructed pneumonia?. Egypt J Bronchol 2014;8:87-90

How to cite this URL:
Agmy GR, Wafy SM, Mohamed Hussein AA, Abd Elkader RE. Can transthoracic ultrasound differentiate between simple and obstructed pneumonia?. Egypt J Bronchol [serial online] 2014 [cited 2019 Nov 20];8:87-90. Available from: http://www.ejbronchology.eg.net/text.asp?2014/8/2/87/145695


  Introduction Top


Examination of the chest is a rapidly developing application of ultrasound (US) and may be used to evaluate a wide range of peripheral parenchymal, pleural, and chest wall diseases. Suboptimal radiography may mask or mimic clinically significant abnormalities, and differentiation of pleural from parenchymal changes can be challenging [1] .

The advantages of low cost, bedside availability, repeated reproducibility, and no radiation exposure have made US an indispensable diagnostic tool in modern pulmonary medicine [2],[3] . Transthoracic ultrasound (TUS) has emerged as a diagnostic tool in various diffuse and focal pulmonary diseases [4] .

TUS can be performed with any modern US unit. A 2-5-MHz curvilinear probe allows the visualization of deeper structures, and the sector scan field allows a wider field of view through a small acoustic window. The chest wall, the pleura, and the lungs may be surveyed quickly with the curvilinear probe. Once an abnormality has been identified, a high-resolution 7.5-10-MHz linear probe can be used to provide detailed depiction of any chest wall, pleural, or peripheral lung abnormality. Both gray-scale and color Doppler imaging are useful for the assessment of pleural and parenchymal abnormalities [5] .

Before performing the US examination, it is important to review the patient's chest radiograph to localize the area of interest. Maximum visualization of the lung and the pleural space is achieved by scanning along the intercostal spaces [5] .

In healthy individuals, visualization of the lung parenchyma is not possible because the large difference in acoustic impedance between the chest wall and the air within the lung results in near total reflection of the US waves. However, in parenchymal diseases that extend to the pleural surface, replacement of the air within the lung creates an acoustic window, allowing assessment of lung tissue [5] .

Lobar pneumonia, segmental pneumonia affecting the pleura and pleural-based consolidations are detectable by TUS. In general, the size of the pneumonia appears smaller on TUS than on radiographs [2] . This is because the periphery of the pneumonia is more air filled, which results in more artifacts, thus limiting complete visualization of the extent of consolidation. In the early phase of consolidation, the lung appears diffusely echogenic, resembling the sonographic texture of the liver. The shape of the pneumonia is rarely well defined, often showing irregular or serrated outlines [5] .

Color Doppler US demonstrates normal or increased flow in the normal vessels of the consolidated lung and may be helpful in distinguishing simple pneumonia from postobstructive pneumonia.

The aim of this work was to describe sonographic features of simple and obstructed pneumonia and discuss the value of TUS in differentiating between both diseases.


  Patients and methods Top


The study was performed in the Chest Department, Assiut University Hospital. A total of 25 patients (17 male and eight female) referred to the chest ultrasonic unit for evaluation of their symptoms, signs, and abnormal chest radiographic findings suggestive of pneumonia were studied sonographically during the period from April 2009 to March 2011. Of them, 18 patients had simple pneumonia (cough, expectoration of purulent sputum, and fever of acute onset in addition to signs of consolidation clinically and radiologically) and seven patients had obstructed pneumonia (cough, expectoration of sputum, and fever of acute onset in addition to signs of consolidation clinically and signs of collapse on chest radiography). Aloka ultrasound diagnostic equipment prosound SSD-3500 (Tokyo, Japan), was used for sonographic evaluation of the study patients.

Techniques for chest ultrasound examination

The US equipment used for US imaging were 3.5- and 7.5-MHz, convex and linear transducers respectively. A higher frequency (7.5 MHz) transducer provided a better resolution of proximal structures such as the chest wall and the pleura. Otherwise, a 3.5-MHz transducer was more suitable as it usually provides a broad view of the field.

The examined areas were selected from a recent chest radiograph. During chest US examination, patients were scanned in the sitting or the supine positions. Bedridden patients were examined by turning them to the oblique or the decubitus position. The patient raises his or her arms and places the hands at the back of the head to slightly extend the intercostals spaces and rotate the scapula outward. The probe was moved in transverse or longitudinal positions along the intercostal spaces to avoid interference by bony ribs. Normal areas on the chest radiograph were also scanned for control comparisons. Before the procedure, a clear, water-based gel was applied to the skin to allow for smooth movement of the transducer over the skin and to eliminate the air between the skin and the transducer. Scanning should be performed during quite respiration, to allow for assessment of normal lung movement, and in suspended respiration, to allow lesions to be examined in detail with gray-scale or color Doppler US. On gray-scale images, the echogenicity of a lesion can be compared with that of the liver and characterized as hypoechoic, isoechoic, or hyperechoic.

The main diagnostic sonographic criteria of TUS are defined as follows. An air bronchogram impresses as a small air inlet within a consolidation measuring a few millimeters in diameter or as a tree-shaped echogenic structure. A fluid bronchogram represents an exudate-packed conducting airway. It occurs less frequently than an air bronchogram, and is characterized by echo-free tubular structures along the airways. The fluid bronchogram indicates a postobstructive pneumonia. Pleural effusions are characterized by an echo-free space between the visceral and the parietal pleura [5] . In this study, effusion reflects pleura adjacent to the pneumonic infiltration.

The institutional ethical committee, Faculty of Medicine, Assiut University, approved the protocol of the study. All patients gave informed consent to participate in the study.

Statistical analysis

Data were analyzed using the appropriate software SPSS, version 16.00 (SPSS Inc., Chicago, Illinois, USA). P-value of less than 0.05 was considered statistically significant.


  Results Top


In all cases studied, differentiation between sonographic signs of simple and obstructed pneumonia ([Table 1]) revealed a positive air bronchogram in 100.00% of the cases with simple pneumonia, but was not found in any case of obstructed pneumonia. However, fluid bronchogram was recorded in 100.00% of obstructed pneumonia but was not found in any case of simple pneumonia (P = 0.005). Oval and rounded shape, irregular shape, sharp well-demarcated, blurred-border, homogenous, heterogeneous, and hypoechoic echo patterns were found in 38.9, 61.1, 33.3, 66.7, 11.1, 88.9, and 100% of the cases of simple pneumonia and in 42.9, 57.1, 28.6, 71.4, 0, 100, and 85.7% of the cases of obstructed pneumonia, respectively. Pleural effusion was present in 44.4 and 42.9% of cases of simple and obstructed pneumonia, respectively.
Table 1 Sonographic signs to differentiate between simple and obstructed pneumonia


Click here to view


Cases presentation

Case 1

A 40-year-old man presented with cough, expectoration, right-sided chest pain, and high-grade fever. Clinical examination suggested pneumonia as a provisional diagnosis. TUS demonstrated an area of consolidation in the right lower lobe. The texture of the consolidated lung appeared isoechoic to the liver ([Figure 1]).
Figure 1: Transthoracic ultrasound demonstrates the texture of the consolidated lung, which appears isoechoic to the liver. Multiple echogenic foci are seen within the consolidated lung and correspond to air-filled airways.

Click here to view


Case 2

A 54-year-old man presenting with cough and hemoptysis. A computed tomography (CT) scan revealed a central perihilar mass with collapse and consolidation of the lower lobe. US clearly demonstrated fluid-filled bronchi (long arrows) as anechoic branching structures of the obstructed pneumonia. The central tumor (short arrows) appears as a well-circumscribed mass, slightly hypoechoic compared with the adjacent consolidated lung ([Figure 2]).
Figure 2: Transthoracic ultrasound demonstrates the area of obstructive pneumonia with a fluid bronchogram and a central tumor.

Click here to view



  Discussion Top


TUS has been proven to be a reliable, efficient, and informative modality for the evaluation of a wide variety of chest diseases [6] . Major advantages of US include the absence of radiation, low cost, flexibility, and bedside availability where suboptimal radiography may mask or mimic clinically significant abnormalities and short examination time compared with CT. Indeed, at present, pneumonia is mostly diagnosed by radiography, and CT is considered the gold standard for the diagnosis of infectious lung diseases. However, in the case of a chest radiograph on only one plane, or in the case of a patient in the lying position, the summation image often cannot provide exact information. The use of CT is limited by its high-radiation exposure and cost. TUS has several advantages, such as its feasibility, low cost, and the possibility of monitoring disease progress, because it can either document resolution or detect complications such as lung abscesses, parapneumonic effusion, empyema, and pleural fibrosis. Moreover, TUS is the method of choice to guide transthoracic aspiration or drainage of pleural effusion, empyema, and pulmonary abscesses in contact with the pleura, playing a very useful role in both the diagnosis and the treatment of infectious diseases and their complications. In this regard, TUS has recently been reported to be as effective as chest CT in detecting loculated effusion and lung necrosis or abscess that result from complicated pneumonia in children [7] .

Meanwhile, community-acquired pneumonia affects 2/1000 persons per year in Europe and is a leading cause of hospital admission in Western countries, with 31.8% patients with community-acquired pneumonia (mostly children and elderly people) requiring hospitalization. The in-hospital mortality rate is still high (about 6%), namely in elderly patients with multiple comorbid conditions [8] . Although pneumonia is the most common cause of lung consolidation, its appearance is nonspecific. Infarction, hemorrhage, vasculitis, lymphoma, and bronchoalveolar carcinoma can result in consolidations that appear similar to that of pneumonia on radiology and US [9] .

The most characteristic finding of simple pneumonia in this study was the presence of air bronchogram in 100% of the included patients. In agreement with our study, Rrissig and Kroegel (2007) reported that 97% of their patients (32/33) demonstrated a positive air bronchogram. Positive air bronchogram is a common radiographic finding in conventional radiograms [10] . The development of this phenomenon essentially requires the replacement of the alveolar lung tissue around the bronchi with fluid or soft-tissue density and most often indicates alveolar disease. Therefore, multiple air inlets within the hypoechogenic area suggest that the lesion detected by TUS indeed represents the alveolar lung infiltration typically observed in pneumonia. Multiple lenticular echoes, representing air inlets and measuring a few millimeters in diameter and extending to the pleural surface, are also observed frequently. These lenticular echoes vary with respiration [2] .

The characteristic finding in this study regarding obstructed pneumonia was the presence of fluid bronchogram in 100%, where this finding may also be observed in other studies (16-92%) [2,11]. These are identified as anechoic tubular structures representing fluid-filled airways. The fluid bronchogram is seen in bronchial obstruction, which can result from either impacted secretions or a proximal tumor [12] . Although the fluid bronchogram may be seen in isolated pneumonia, the presence of this sign in the appropriate clinical context should raise the suspicion of postobstructive pneumonitis [13] .

A number of limitations in our analysis should be noted. The major study aim was to evaluate the potential of TUS imaging in depicting acute pneumonic lesions of patients with established pneumonia. The major inclusion criteria used in this study was the demonstration of pneumonic lesions in a conventional plain radiograph of the chest precluding comparison of TUS with the established radiographic technique. Thus, the sensitivity and the specificity of TUS imaging compared with chest radiography in detecting early pneumonia could not be established. Therefore, the results of our study need to be confirmed by prospective studies with a larger number of patients. Finally, as some of the pneumonic lesions may not extend to the pleural surface of the lung, centrally located pneumonic infiltrates are not assessable by sonography. Yet, the results presented indicate that pneumonia can be recognized in about 90% of the patients, which is in good agreement with a previously published report [10] . Therefore, inconspicuous sonographic images in patients with suspected pneumonia cannot fully exclude the condition.


  Conclusion Top


The TUS-based procedure should be added to the tools of diagnostic techniques used when pneumonia is suspected as simple and obstructed pneumonia cannot be differentiated.


  Acknowledgements Top


Conflicts of interest

None declared.

 
  References Top

1.
Yu CJ, Yang PC, Chang DB, Luh KT. Diagnostic and therapeutic use of chest sonography: value in critically ill patients. Am J Roentgenol 1992; 159 :695-701.  Back to cited text no. 1
    
2.
Mathis G. Thorax sonography-part-2: peripheral pulmonary consolidation. Ultrasound Med Biol 1997; 23 :1141-1153.  Back to cited text no. 2
    
3.
Sperandeo M, Canevvale V, Muscarella S. Clinical application of transthoracic ultrasonography in patients with pneumonia. Eur J Clin Invest 2010; 41 :1-7.  Back to cited text no. 3
    
4.
Targhetta R, Chavagneux R, Bourgeois JM, Dauzat M, Balmes P, Pourcelot L. Sonographic approach to diagnosing pulmonary consolidation. J Ultrasound Med 1992; 11 :667-672.  Back to cited text no. 4
    
5.
Koh DM, Burke S, Davies N, Padley SPG. Transthoracic US of the chest: clinical uses and applications. Radiographs 2002; 22 : e1.  Back to cited text no. 5
    
6.
Beckh S, Boleskei PL, Lessnau KD. Real-time chest ultrasonography: a comprehensive review for the pulmonologist. Chest 2002; 122 :1759-1773.  Back to cited text no. 6
    
7.
Kurian J, Levin TL, Han BK, Taragin BH, Weinstein S. Comparison of ultrasound and CT in the evaluation of pneumonia complicated by parapneumonic effusion in children. Am J Roentgenol 2009; 193 :1648-1654.  Back to cited text no. 7
    
8.
Viegi G, Pistelli R, Cazzola M. Epidemiological survey on incidence and treatment of community acquired pneumonia in Italy. Respir Med 2006; 100 :46-55.  Back to cited text no. 8
    
9.
Yang PC. Color Doppler ultrasound of pulmonary consolidation. Eur J Ultrasound 1996; 3 :169-178.  Back to cited text no. 9
    
10.
1Gehmacher O, Mathis G, Kopf A, Scheier M. Ultrasound imaging of pneumonia. Ultrasound Med Biol 1995; 21 :1119-1122.  Back to cited text no. 10
    
11.
1Reissig A, Kroegel C. Sonographic diagnosis and follow-up of pneumonia: a prospective study. Respiration 2007; 74 :537-547.  Back to cited text no. 11
    
12.
1Yang PC, Luh KT, Lee Chang DB. Ultrasound evaluation of pulmonary consolidation. Am Rev Respir Dis 1992; 146 :757-762.  Back to cited text no. 12
    
13.
1Yang PC, Lee YC, Wu HD, Luh KT. Lung tumors associated with obstructive pneumonitis: US studies. Radiology 1990; 17  Back to cited text no. 13
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Patients and methods
Results
Discussion
Conclusion
Acknowledgements
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed1410    
    Printed31    
    Emailed0    
    PDF Downloaded140    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]